Write your name and student number in the top left corner of each page

1. Determine the z-transform of the following sequences. Wherever convenient, use the properties of the z-transform to make the solution easier
(a) $x[n]=\left(\frac{1}{2}\right)^{n} \mu[-n]$
(b) $x[n]=\left(\frac{1}{3}\right)^{n} \mu[n]+4^{n} \mu[-n-1]$
(c) $x[n]=n\left(\frac{1}{2}\right)^{n} \mu[n+1]$
2. Consider the discrete-time LTI system described by the following simple difference equation:

$$
y[n]=x[n]-x[n-1]
$$

(a) determine the impulse respone of this system, $h[n]$, and plot $h[n]$.
(b) determine and write a closed-form expression for the DTFT, $H\left(e^{i \omega}\right)$, of $h[n]$
(c) plot the magnitude $\left|H\left(e^{i \omega}\right)\right|$ over the range $-\pi<\omega<\pi$
(d) plot the phase of $H\left(e^{i \omega}\right)$ over $-\pi<\omega<\pi$
3. Given the second order band stop filter with transfer function

$$
H_{B S}(z)=\frac{\kappa\left(1-2 \beta z^{-1}+z^{-2}\right)}{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}}
$$

where α, β and γ are real constants with $|\alpha|<1$ and $|\beta|<1$
(a) determine α and β so that the filter has a notch at $\omega_{0}=0.3 \pi$ and a band width of 0.3π
(b) what is the quality factor of the filter
(c) draw the magnitude response of $H_{B S}(z)$
4. Consider the discrete-time LTI system defined by the transfer function

$$
H(z)=\frac{20-24 z^{-1}+20 z^{-2}}{\left(2-z^{-1}\right)\left(2+2 z^{-1}+z^{-2}\right)}
$$

(a) draw the pole-zero diagram of $H(z)$
(b) given that the impulse response $h[n]$ of this system is causal, what is the ROC
(c) draw a block diagram which implements this transfer function in cascade form using $1^{\text {st }}$ and $2^{\text {nd }}$ order sections.
5. The sequence of Fibonacci number $f[n]$ is a causale sequence defined by

$$
f[n]=f[n-1]+f[n-2], n \geq 2 \text { with } f[0]=0 \text { and } f[1]=1
$$

(a) develop an exact formula to calculate $f[n]$ directly for any n
(b) show that $f[n]$ is the impulse response of a causal LTI system described by the difference equation $y[n]=y[n-1]+y[n-2]+x[n-1]$

